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Àííîòàöèÿ

Â ñòàòüå ïðåäëàãàþòñÿ óëó÷øåíèÿ àïïàðàòíîé ðåàëèçàöèè êóñî÷íî-ïîëèíîìèàëü-
íîé àïïðîêñèìàöèè â ïîëóïðîâîäíèêîâûõ óñòðîéñòâàõ. Ïðåäëàãàåòñÿ íîâàÿ îöåíêà îøèá-
êè èíòåðïîëÿöèè ïîëèíîìàìè ìàëîé ñòåïåíè ñ ïîòî÷å÷íûìè îãðàíè÷åíèÿìè íà ðàâíî-
îòñòîÿùèõ óçëàõ. Ïðåäëàãàåòñÿ ìåòîä óìåíüøåíèÿ ðàçìåðà òàáëèö è ïî÷òè îïòèìàëü-
íîé êâàíòèçàöèè êîýôôèöèåíòîâ ñ èñïîëüçîâàíèåì ìåæñåãìåíòíûõ îãðàíè÷åíèé è ñìå-
øàííîãî öåëî÷èñëåííîãî ïðîãðàììèðîâàíèÿ, îáåñïå÷èâàþùèé çàäàííóþ òî÷íîñòü àï-
ïðîêñèìàöèè. Äåìîíñòðèðóåòñÿ 60 % ñîêðàùåíèå ðàçìåðà òàáëèö ïî ñðàâíåíèþ ñ ìåòî-
äîì áåç èñïîëüçîâàíèÿ ìåæñåãìåíòíûõ îãðàíè÷åíèé. Ðåçóëüòàòû ëîãè÷åñêîãî ñèíòåçà
ïîëóïðîâîäíèêîâîé ñõåìû äåìîíñòðèðóþò ñóùåñòâåííîå âëèÿíèå óìåíüøåíèÿ ðàçìåðà
òàáëèö íà ïëîùàäü óñòðîéñòâà.

Êëþ÷åâûå ñëîâà: êóñî÷íî-ïîëèíîìèàëüíàÿ àïïðîêñèìàöèÿ, èíòåðïîëÿöèÿ, ÷èñëà
Ëåáåãà, ëîãè÷åñêèé ñèíòåç ïîëóïðîâîäíèêîâûõ ñõåì.

1. INTRODUCTION

Hardware blocks for calculating smooth
functions arecommon in many hardware designs
related to DSP, 2D and 3D graphics and
computer vision. Industrial component libraries
contain implementations for such blocks [6; 7].
Piecewise polynomial approximation is an
architecture of choice [5; 8] for computation
accuracies higher than 18 bits as it providesa
good trade-off between latency and area.

On each interval the target function
isusually approximated by min-max or
orthogonal interpolation polynomials as these
polynomials provide strong error bounds for
quantized coefficients [1; 4].

It�s desirable to apply additional constraints
on the values and derivatives of polynomials
on the boundaries of adjacent segments. It

allows sharing the table data between segments
reducing the table size. This complicates the
quantization problem as the constrained
polynomial may be quite far from min-max.The
quantization effects on polynomial coefficients
and computations should be accounted
analytically, which is a complex mathematical
task, or through exhaustive verification, which
is impossible for high accuracies.

Strollo et al. [5] propose an effective
empirical method for finding optimal table bit-
width for piecewise polynomials with
constraints on 2 adjacent segments and
pointwise constraints on polynomial values on
a uniform grid using mixed integer
programming. Constraints on adjacent segments
allow data sharing between segments and reduce
table size by up to 40 %.

In this paper a strong posterior error bound
is provided for any polynomial approximation

Ñàëèùåâ Ñåðãåé Èãîðåâè÷
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of a function with limited second derivative on
a closed interval with pointwise constraints on
polynomial values on a uniform grid. It allows
extending method  [5] with additional con-
straints on the polynomial values and deri-
vatives for further table size reduction.The new
error bound guarantees method accuracy for
conservative data path quantization. So it can
be used without exhaustive verification and so
it is applicable for arbitrarily high bit-width.

New constraints on polynomial values and
derivatives on 4 adjacent segments are pro-
posed.The method has been evaluated using the
quadratic piecewise interpolation for a couple
of elementary functions. The case study shows
that applying both types of constraints can save
up to 60 % of  table bit-width compared to the
unconstrained case. The architecture for one
function was synthesized from SystemC to gate
level using High-Level Synthesis and RTL
synthesis tools. The comparison shows that
additional constraints lead to noticeable design
area reduction compared to the method with
only 2 segment constraints.

Section 2 gives an overview of piecewise
polynomial approximation and error analysis.
Section 3 provides a description of the proposed
algorithm, a posterior error bound and
constraints on multiple segments for table size
reduction. Section 4 describes implementation
results for a trigonometric function and a natural
logarithm for accuracies 24�32 bits. Section 5
compares the gate level synthesis results for
different constraints and architectures for
trigonometric functions. Section 6 summarizes
the results and section 7 concludes the paper.

2. PIECEWISE  POLYNOMIAL
APPROXIMATION

The typical formulation of the function
approximation problem is the following: for
given f (x) defined on [a, b] we need to build
g(x), with the error strictly less than 1 unit in
last place of fixed-point binary representation
of the result.

gf −  < α, α = 1 ulp, ulp = 2�k. (1)

Here and below )(sup
,

xfff SxS ∈∞ == .

The piecewise polynomial approximation
is a low-order polynomial approximation on
multiple segments with different polynomial on
each interval. The polynomial coefficients
are tabulated. We map each segment on [�1, 1].



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 −++= ++
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]1,1[−∈x , ]1..0[ −∈ Mi , (2)

aa =0 , baM = , ii aa >+1 . (3)

Here  M  is a number of segments, )(xf i  is
a remapped piece of )(xf  on a segment with
index  i.

We need to implement architecture for

calculating polynomial ∑ =
= N

k

k
iki xcxp

0
)(

approximating )(xf i , ]1,1[−∈x , where N  is
an approximation order. The set of  {pi(x)}
should be optimal in terms of table size.

The multiplications and additions in data-
path for polynomial calculation should be
quantized. Let  gi(x)  be a quantized polynomial
approximation on sub-interval index  i,  then
the error can be represented as

quantmethiiiiii gppfgf εε +=−+−≤− ,

]1..0[ −∈ Mi . (4)

Here methε  is the error bound for the
approximation method calculated accurately
and quantε   is the bound for error introduced by
limited precision of implementation. The task
of data-path quantization can be solved
separately either manually or by an auto-
quantization tool. The data-path quantization is
conservative if the following inequity holds

αεε <+ methquant . (5)

In this case the resulting architecture will
have guaranteed accuracy and the exhaustive
verification will not be required. So the
approach can be used for arbitrarily high
precisions. For the datapath calculating a class
of non-constant polynomials the quantization
error includes errors for final rounding to 1 ulp
and intermediate term quantization using  l
guard bits. Here we assume no quantization of
x, so we calculate gi(x) only in exactly
representable input points

)21(
2

l
quant

−+≥ αε . (6)
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We need to choose the number of guard bits
l and approximation {pi(x)} fulfilling methε
requirement

)21(
2

l
meth

−−< αε . (7)

Then we need to find the datapath
quantization fulfilling (5). As the points with
maximum error for {pi(x)} and for data-path
quantization rarely coincide, it�s possible to
break the conservative requirement and further
reduce the width of data-path intermediate
types. Doing so requires exhaustive verification
and is not applicable for high accuracy due to
the test bench running time.

3.  APPROXIMATION  POLYNOMIALS
WITH  POINTWISE  VALUE

CONSTRAINTS

Let�s consider the polynomial

∑ =
= N

k

k
k xcxp

0
)(  approximating  f (x) on the

interval [�1, 1] with error ε .

ε=− pf . (8)

In the context of piecewise approximation
p(x) is an approximation polynomial for one
segment. We would like to represent its
coefficients with minimal bit-width. This
problem is hard to solve. We consider a simpler
problem by applying the constraint only to a
limited number of points  P + x:

0)()(max ε=− ii xpxf , 10 −=x ,

1=Px , ii xx >+1 , ]..0[ Pi ∈ . (9)

Section 3.1 describes the way to estimate
ε  independently of p(x),

methεεγε =+≤ 0 . (10)

We can provide a constructive procedure for
choosing p(x) and 0ε  to fulfill the method
requirements (7):

1. Choose piece-wise approximation
segment and  f(x)  for this segment.

2. Find |)()(|maxmin ii xpxf ∗∗ −=ε ,

∑ =
= N

k kkxcxp
0

** )(  using Linear Program-

ming (LP).
3. Calculate γ  using (28).
4. Choose the number of guard bits l such

that γαε −−< − )21(
2

* l .

5. If cannot complete step 4 increase P or
reduce segment size, repeat form step 1.

6. Set γαε −−= − )21(
20

l
.

7. Choose Zdk ⊂}{  fractional word

lengths for coefficients }{ kc .
8. Find }{ kc  for  which Zck

kd ⊂}2{  and

0|)()(| ε≤− ii xpxf  using mixed integer
programming.

9. Repeat from step 7 until minimal total

bit-widthis ww min* = ,  ∑
=

=
N

k
k

kd
cw

0
2 2log   is

found using branch-and-bound strategy.

10. If  
*w  is infeasible for implementation,

increase  P  or reduce segment size, repeat form
step 1.

By construction the above algorithm pro-
vides near optimal bit-width coefficients }{ kc
of approximation polynomial for a given α.
Supposing small changes of kc  between
optimization steps we can achieve good results

by optimizing ∑ =
= N

k kdd
0

 instead of w.

Details on applying LP are given in section 3.2.

Section 3.3 describes a technique of table size
reduction by applying additional constraints
to LP.

3.1.  ERROR  BOUND  FOR  UNIFORM  GRID

To make the previous algorithm work we
need to estimate γ  which limits the deviation
of  between known points. Let,  f  have conti-
nuous first and second derivatives.

Lemma 1. If ∑ =
= N

k

k
kxcxp

0
)(  approxi-

mates f (x) on a set of interpolation nodes
1

1}{ +
=

N
kkx  on [�1, 1] then

)()(max})({
)!2(

2
2),1(

1

iiiN

N

xpxfxf
N

pf −+′′
−

≤′′−′′ +

−

λ .

(11)

Here 
1
0, }{

−
=

r
vvrλ  is a set of generalized

Lebesgue constants characterizing  the set of

interpolation nodes 1
1}{
+

=
N
kkx , the usual

Lebesgue constant is 0,rr λλ =  and  r = N + 1

∑ =−∈= r

k

v
krxvr xl

1

)(
,]1,1[, )(supλ ,

rv <≤0 , 1≥r , ]1,1[−∈x . (12)
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)()(  ,  (13)

Here )}({ , xI kr  is a set of fundamental
polynomials of Lagrange interpolationon

1
1}{ +

=
N
iix  nodes.

Proof:
The proof is due to equation (10.10) in [4].

Lemma 2. Derivatives of fundamental
polynomials of Lagrange interpolation have a
form

∑ ==
−

−
=′ r

kmm
km

xm
r

kr xx

kl
xl

,1

)(
)1(

,

,
)( ,

)(
)(

)( ,),1( xl
xx

xx
xl kr

m

kmm
kr −

−=− . (14)

Here )(),1( xl m
kr −  is a fundamental

polynomial of lower order interpolation with
one node removed.

Proof is by definition of fundamental
polynomials (13).

Lemma 3. For 3 and 4 equidistant nodes
on [�1, 1] used in quadratic and cubic
interpolation Lebesgue constants for the second
derivative have the following upper bounds

62,3 ≤λ , 1622,4 ≤λ . (15)

Proof:
For the quadratic case compute the second

derivatives of fundamental polynomials using
lemma 2, by definition

∑ ∑ ∑
= ≠= ≠≠= −−

=
3

1

3

,1

3

,,1

1,1
2,3 ))((

)(

k kmm kqmqq mqkm xxxx

xl
λ .

(16)

For 3 equidistant nodes on [�1, 1],

1≥− qm xx , qm ≠  and 11,1 =l .
For cubic case computations are slightly

more difficult

∑ ∑ ∑
= ≠= ≠≠= −−

=
4

1

4

,1

4
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,
,2

2,4 ))((
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k kmm kqmqq mqkm

mk
q

xxxx
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λ .

(17)

Here mk
ql ,

,2  is a first order fundamental poly-
nomial with 2 interpolation nodes removed.

2
31 ≤

− qk xx
, kq ≠ (18)

3,2 ≤
−
−

=
qk

q
k xx

xx
l , kq ≠ . (19)

Lemma 4. Lebesgue constants are invariant
for linear transformation of variables. Consider
linear mapping between  [�1, 1]  and  [a, b].

22
ab

s
ab

x
++−= . (20)

The corresponding Lebesgue constant is

vr

v

vr
ab

,, 2
ˆ λλ 





 −= . (21)

Proof:
Directly follows from definition of the

generalized Lebesgue constants (12).

Theorem 1. For }{ ix  which is uniform grid

on [�1, 1] with step ii xx −= +1δ , 10 −=x ,

1=Px , there exists γ  fulfilling (10) which is

independent of  p(x)  and only depends on  f(x)

and δ :

2),1(0

224

8)!2(
2

+

−

+′′
−

= N

N

f
N

λεδδγ , (22)

Here vr ,λ  is the generalized Lebesgue
constant (12).

Proof:
Consider the point the approximation error

is maximal, on a compact it always exists:

)()(
**

xpxfpf −=−=ε . (23)

There are 2 possible cases, if it lies on the

interval boundary { }1,1* −∈x , then 0εε =  and

0=γ , as �1, 1 are elements of the grid.
Otherwise )1,1(* −∈x , in this case *x  is the

extreme point of a smooth function and so

0)()( =′−′ xpxf . (24)

Let kx  be a nearest point in a grid to *x . So

the distance between points is

2
* δσ ≤−= kxx . (25)
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Let�s consider the first 2 elements of  Taylor

expansion for kx  in point *x

 ))()((
2

)()()()(
2

** ψψδ
pfxpxfxpxf kk ′′−′′+−=− ,

],[ *
kxx∈ψ . (26)

By replacing the last term with the estimate
from lemma 1 we receive

)}({
8)!2(

2
02),1(0

224

0 IiiN

N

xf
N ∈+

−

+′′
−

+≤ λεδδεε .

(27)

Here ]..0[0 PI ⊂ , 10 += NI  is a subset of

indexes defining set of interpolation nodes with
minimal Lebesgue constant.

Corollary. For the uniform grid P
iix 0}{ =  on

[�1, 1] and interpolation order = 2, 3 and

0mod =NP ,

8)!2(
2 2),1(0

224

0
+

−

+′′
−

+≤− N
N

f
N

λεδδγεε ,

62,3 ≤λ , 1622,4 ≤λ . (28)

Proof:
As the grid contains  N + 1 equidistant nodes

the proposition directly follows from Theorem
1 and Lemma 3.

3.2. LP AND ILP METHODS FOR FINDING
POLYNOMIAL COEFFICIENTS

For the sake of simplicity we will consider
that the approximation segment is mapped to
[0, 1]. Due to Lemma 4 all the above results
still apply. We need to solve the following
optimization problem.







∑ =
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=→

∈>==
=−
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k
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iiP
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0

10

1

)(min,

]..0[,,1,0

,)()(max

ε

ε

(29)
For using the linear programming solver we

need to convert it to the canonical form.
Let  V  be a Vandermonde matrix of order

N  of points }{ ix .
PN

ki
k

i
xV ,

0,0}{ === . (30)

The vector of function values is

{ })(...,),( 0 Pxfxff = . (31)

The vector of variables is

{ } { }εε ,,...,,0 cccx N == . (32)

The minimized function is  lx, where
{ }1,0...,,0=l . In these terms the canonical

linear problem is









→







−

≤





−−
−

min

1

1

lx

f

f
x

V

V
. (33)

To implement the main algorithm we need
to solve the mixed integer programming [2]
problem with the additional integer constraint

Zci
id ⊂}2{ . As we know the target  ε  we don�t

need to solve the optimization problem and only
need to find a base solution satisfying the
constraints. So the usual branch-and-bound
method degrades to depth-first-search, which
is substantially faster.

3.3. USING  LINEAR  CONSTRAINTS
FOR  TABLE  SIZE  REDUCTION

Strollo et al. [5] show that it�s possible to
share the table data between 2 adjacent
approximation segments by exploiting the
smoothness of the approximated function.

We consider an  f (x), ∈x [�1, 1]. It can be
decomposed into 2 halves.





−∈−
∈

=
]0,1[),(

]1,0[),(
)(

xxf

xxf
xf

L

R
. (34)

Both Lf , Rf  are defined on  [0, 1] . Then
we consider polynomial approximations for Lf ,

Rf  of order N.

∑ =
= N

i

i
i xpxp

0
)( , ∑ =

= N

i

i
i xqxq

0
)( . (35)

We are interested in )(xp , )(xq  which

share some coefficients. It means the
corresponding derivatives at  x = 0 are equal.
Case study in [5] shows that for quadratic and
cubic case it�s possible to share all the
coefficients except one of the highest order.

)0()0(
)()( vv

qp = , Nv <≤0 . (36)

It is equivalent to

vR
v

vL cc ,, )1(−= , Nv <≤0 . (37)

We employ the mixed integer programming

to find the coefficientsof )(xp , )(xq . The

canonical for the problem is as follows
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c

c

V

V

V

V

. (38)

Here  K  is the derivative equality constraint
between adjacent segments. For example 1,2K
for sharing the first 2 coefficients in quadratic
approximation






 −
=

0

0

01

00

00

10

10

01
1,2K . (39)

We can exploit the smoothness of   f (x) even
further by grouping 4 adjacent intervals. Let�s

consider f (x), ]4,0[∈x . We can divide it into
4 segments in the following way











∈−
∈−
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1
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xf  . (40)

For these functions we consider
approximation polynomials 3210 ,,, pppp . We
can employ the following constraints

Nv
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v

v
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<≤




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∑

0,
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)0()0(

)0()0(

)(

1

)(
2

)(

3

)(

2

)(

1

)(

0

δ

δ
. (41)

Improvement by applying the 4 seg-
ment constraints vs. 2 segment constraints is
smaller compared to 2 segment constraints vs.

no constraint. First of all )1()(vp   contains more
than 1 summand. So exploiting the data sharing
requires adders in the data path. Also vδ  need
to be tabulated taking some additional bits. As
the highest order coefficients are not changed
it�s expected that the data sharing will have a

minor effect on the critical path timing. It will
be shown in the case study that the data sharing
is beneficial for architecture area.

4. IMPLEMENTATION

For the implementation the functions
resembling Synopsis DesignWare IP blocks
DW_sincos [6] and DW_ln [7] were chosen
with fractional accuracy ranging from 24 to 32.
The first is a )sin( xπ  and )cos( xπ  approxima-
tion for )1,1[−∈x . The second is a natural
logarithm )1ln( +x  approximation for )1,0[∈x .

Due to symmetry in trigonometric functions
it�s only needed to approximate )sin( xπ  for

)2/1,0[∈x .
For both cases the piecewise quadratic

approximation was used with 2 segment
constraints,with 4 segment constraints proposed
above,and without constraints.A Matlab script
was built to generate the tables for both cases.

The following tables show the growth of
bit-width of tabulated values with increased
accuracy (table 1).

The average bit-width reduction per
segment for  sin x  for 2 segment constraints is
40 %, for 4 segment constraints is 57 %
(table 2).

The average bit-width reduction per
segment  ln x  for 2 segment constraints is 40 %,
and for 4 segment constraints is 60 %, when
compared to the unconstrained case.

5. COMPARISON

For the comparison a block compatible with
Synopsys DesignWareDW_sincos [6] was
implemented using the quadratic piecewise
polynomials on optimal number of segments
with 4 segment derivative constraints, 2 segment
derivative constraints and cubic piecewise
polynomials on 64 segments as described in the
Synopsys DesignWare trigonometric architec-
ture overview [8]. In all cases the polynomial
values were computed directly without using
Horner scheme. A conservative data-path
quantization has been used.For quadratic
methods the SystemC code was synthesized to
gate level RTL (table 3, 4).
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Accuracy Guard 

bits 

Segments Bits per segment 

unconstrained 

Bits per segment 

2 seg. constraints 

Bits per segment 

4 seg. constraints 

24 2 128 54 32 21.5 

25 3 128 60 36 24.5 

26 4 128 66 40 27.25 

27 2 256 60 35.5 23.25 

28 3 256 66 39.5 26.25 

29 4 256 72 43.5 29.5 

30 2 512 66 39 26.5 

31 3 512 72 43 28.5 

32 4 512 78 47 32.75 

Table 2. Ln approximation

The area comparison in Table 3 shows that
the table size has serious impact on the resulting
design and that approximations with 4 segment
constraints have better area in practice
compared to 2 segment constraint designs and
cubic design despite additional adders to exploit
the data sharing. Table 4 shows that the timing
of quadratic polynomial is also smaller by 22�
30 % vs. cubic. It is due to one less multiplier
on critical path. These numbers exhibit
significant variability as they are highly
sensitive to low level optimizations applied
during gate level synthesis.

6. RESULTS

This paper provides a new error bound for
the method of finding the piecewise polynomial
approximation with finite precision coefficients
of optimal bit width and linear constraints on
derivatives for cross-segment data sharing
proposed in [5]. The error bound allows
guaranteed accuracy independent of the
additional linear constraints. So the method can
be extended with additional constraints and
applied to arbitrary accuracy without exhaustive
verification.

Accuracy Guard 

bits 

Segments Bits per 

segmentunconstrained 

Bits per segment 

2 seg. constraints 

Bits per segment 

4 seg. constraints 

24 2 128 57 34.5 25 

25 4 128 66 40.5 29.5 

26 2 256 60 36 24.5 

27 2 256 63 38 27.25 

28 4 256 72 44 31.75 

29 2 512 66 39.5 26.75 

30 3 512 72 43.5 30.5 

31 4 512 78 47.5 34 

32 2 1024 72 43 29.75 

Table 1. Sin approximation

Accuracy (bit) Quadratic 4 seg. Quadratic 2 seg. Cubic no constraint 

24 55% 72% 100% 

32 68% 84% 100% 

Accuracy (bit) Quadratic 4 seg. Quadratic 2 seg. Cubic no constraint 

24 70% 74% 100% 

32 78% 74% 100% 

Table 3. Design area, clk 5ns

Table 4. Best timing
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Abstract

An improvement to the piecewise polynomial approximation in hardware is proposed.
A new error bound is given for the low-order polynomial interpolation with pointwise constraints
ona uniform grid. A method of table size  reduction  and  near optimal quantization of  coefficients
using intersegment constraints and mixed integer programmingwith guaranteed accuracy is
proposed.A case study shows up to 60% table size reduction compared to unconstrained
polynomials. Gate level RTL synthesis shows that table reduction has noticeable impact on the
design area.
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New linear constraints on derivatives for 4
adjacent segments are proposed.The case study
shows that applying additional constraints
substantially reduces the design area compared
to the 2 segment constraints case and the cubic
interpolation case.

7. SUMMARY

Piecewise polynomial approximation is the
method of choice for hardware blocks
computing smooth functions with fractional
accuracies higher than 18 bits due to balance
between performance and design complexity.
It is used in multiple research papers and in
industry strength component libraries.

The main result of this paper is a practical
method of building piecewise polynomial
approximation with an optimal table bitwidth

for given constraints with a guaranteed accuracy
based on solving Integer Linear Programming
problem.

In addition to the first and second derivative
constraints on 2 adjacent segments, constraints
for 4 adjacent segments were added leading to
table reduction compared to [5].

For now, only a limited case study has been
performed. The results show that the table
reduction positively affects the area of the
design without noticeable impact on timing.

The effect of datapath quantization hasnot
beeninvestigated yet. The manual backward
error propagation method was used leading to
conservative quantization. It is expected that
more aggressive quantization might save a
couple of bits from multiplier widths reducing
the design area even further.


